Please check the examination details below	before entering your candidate information			
Candidate surname	Other names			
Pearson Edexcel International Advanced Level	e Number Candidate Number			
Friday 17 January 2020				
Afternoon (Time: 1 hour 20 minutes)	Paper Reference WCH13/01			
Chemistry International Advanced Subsidiary/Advanced Level Unit 3: Practical Skills in Chemistry I				
Candidates must have: Scientific calc Ruler	ulator Total Marks			

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 Tests were carried out on some pairs of compounds.
 - (a) (i) Bromine water was added to separate solutions of sodium chloride and sodium iodide.

State **one** different observation for each reaction.

(2)

sodium chloride	
sodium iodide	

(ii) Name a test, with the expected observation, to confirm the presence of the sodium ion in these compounds.

(2)

Test	Observation

(b) (i) Barium chloride solution and hydrochloric acid were added to separate aqueous solutions of ammonium sulfate and ammonium nitrate.

State what would be **seen** for each compound which would allow you to distinguish between them.

(2)

ammonium sulfate ammonium nitrate

(ii)	Give a test, with the expected result, to confirm the presence of the
	ammonium ion (NH ₄) in the ammonium compounds.

(2)

Test	Result

(c) (i) Acidified potassium dichromate(VI) solution was added to two test tubes each containing a different alcohol. The test tubes were placed in a warm water bath.

The alcohols were propan-1-ol and 2-methylpropan-2-ol.

State what would be **seen** for each alcohol which would allow you to distinguish between them.

(2)

propan-1-ol

2-methylpropan-2-ol

(ii) Give a **chemical** test, with the expected observation, to confirm the presence of the hydroxy group.

(2)

Observation

(d) Acidified potassium manganate(VII) solution was added to separate test tubes containing samples of hexane and hexene. The test tubes were shaken gently.

State what would be **seen** for each compound which would allow you to distinguish between them.

(2)

hexane..

hexene.

(Total for Question 1 = 14 marks)

2 A class of students carried out experiments to determine the enthalpy change for the reaction of magnesium metal with hydrochloric acid.

The following method was used.

- Step **1** A 1.00 m length of magnesium ribbon was cleaned using sandpaper, weighed and cut into 10 cm lengths.
- Step 2 50 cm³ of dilute hydrochloric acid (an excess) was placed into a polystyrene cup and the temperature measured.
- Step **3** A 10 cm length of magnesium ribbon was added to the hydrochloric acid. The solution was stirred gently and the maximum temperature recorded.

$$Mg + 2HCI \rightarrow MgCI_2 + H_2$$

Results

Measurement	Value
Mass of 1.00 m of magnesium ribbon/g	0.86
Initial temperature of hydrochloric acid before addition of magnesium ribbon/°C	21.4
Final temperature of solution/°C	29.2

(a) (i) Calculate the number of moles of magnesium in the 10 cm length of ribbon used in this experiment. [A_r value: Mg = 24.3]

(2)

(ii) Calculate the enthalpy change for this reaction including a sign and units. Give your answer to an appropriate number of significant figures.

Data:

Specific heat capacity of the solution = $4.2 \,\mathrm{Jg^{-1}\,^{\circ}C^{-1}}$

The density of the reaction mixture = $1.0 \,\mathrm{g\,cm^{-3}}$

(4)

(b) (i) The maximum uncertainty each time the thermometer was read was \pm 0.1 °C. Calculate the percentage uncertainty in measuring the temperature change in this experiment.

(1)

(ii) Suggest **one** way of reducing the percentage uncertainty in measuring the temperature change without changing the apparatus or just repeating the experiment. Justify your answer.

(2)

(c)	 One student carried out the same experiment but used a glass beaker instead of a polystyrene cup. 				
	State how this would affect the value of the enthalpy change obtained. Justify your answer.				
		(2)			
(d)	Explain why the magnesium ribbon was cleaned with sandpaper before being weig	hed. (2)			
	(Total for Question 2 = 13 mark	ks)			

BLANK PAGE

- 3 An experiment was carried out to determine the purity of solid sodium carbonate, Na₂CO₃. The following procedure was used.
 - 4.89 g of impure sodium carbonate was weighed and dissolved in distilled water.

The solution and washings were transferred to a 250.0 cm³ volumetric flask, and the liquid level made up to the mark with distilled water and the flask shaken.

A pipette was used to transfer 25.0 cm³ portions of the solution to conical flasks.

Each portion of the solution was then titrated with hydrochloric acid of concentration 0.200 mol dm⁻³.

$$Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + H_2O(I) + CO_2(g)$$

(a) The indicator used was methyl orange. State the colour change at the end-point.

(2)

From	to	
1 1 0 1 1 1	w	

(b)

Results

Number of titration	1	2	3	4
Burette reading (final)/cm ³	27.55	26.25	28.30	26.15
Burette reading (start)/cm ³	0.00	0.05	1.05	0.05
Volume of HCI(aq)/cm³				

(i) Complete the table and, using appropriate titrations, calculate the mean titre.

(2)

(ii) Calculate the percentage purity, by mass, of the sodium carbonate. (5)

(Total for Question 3 = 9 marks)

4		hane can be prepared by reacting ethanol with a mixture of sodium bromide entrated sulfuric acid.	
	(a) Step	5 cm ³ of ethanol and 5 cm ³ of water are added to a round-bottomed flask. The flask is placed in an ice bath and 5 cm ³ of concentrated sulfuric acid is added slowly. During this process the flask is shaken gently.	
	Expla	in why the sulfuric acid must be added slowly.	
			(2)
	(b) Step	2 6.0 g of solid potassium bromide is ground up into a fine powder using a pestle and mortar. The powder is then added to the round-bottomed flask containing the ethanol and concentrated sulfuric acid. The mixture is heated.	
	State	why the potassium bromide is ground up to a fine powder. Justify your answ	ver. (2)

- (c) Step 3 The crude bromoethane formed in Step 2 is distilled off.
 - (i) Draw a labelled diagram to show the apparatus suitable for this distillation. Include a thermometer but no clamps or stands.

(3)

(ii) State how anti-bumping granules prevent bumping in the distillation flask.		
(d) Step 4 The distillate from Step 3 is transferred to a separating funnel where it separates into an aqueous layer and a layer containing impure bromoethane. ———————————————————————————————————		
bromoethane layer		
(i) State two physical properties of bromoethane that can be deduced from this	diagram.	

is added to the impure bromoethane in a separating funnel and the two layers separated again. State why sodium hydrogencarbonate solution is added to the impure bromoethane. (1)		(Total for Question 4 = 14 marks)
is added to the impure bromoethane in a separating funnel and the two layers separated again. State why sodium hydrogencarbonate solution is added to the impure bromoethane. (1) (5) Step 6 The bromoethane is placed into a sample bottle and a drying agent is added. (i) Identify, by name or formula, a suitable drying agent.		gent has been added and the mixture allowed to stand.
is added to the impure bromoethane in a separating funnel and the two layers separated again. State why sodium hydrogencarbonate solution is added to the impure bromoethane.	·	lentify, by name or formula, a suitable drying agent.
is added to the impure bromoethane in a separating funnel and the two layers separated again.	State	
	•	is added to the impure bromoethane in a separating funnel and the two layers separated again.

BLANK PAGE

BLANK PAGE

The Periodic Table of Elements	9	(13) (14) (15)	12.0 C carbon n'	Al Si P Al Si P aluminium silicon phosphorus 13 14 15	2.69	Ga gallium ge	114.8 118.7 In Sn	m indium 49	200.6 204.4 207.2 209.0 Hg TI Pb Bi mercury thallium tead bismuth 80 81 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated	163 165 167 169 Dy Asprosium dysprosium 66 Ho Er Fraium erbium erbium erbium erbium 67 Fraium erbium 68 69	[251] [254] [253] [256] Cf Es Fm Md
				(11) (11)	_	Ni Cu nickel copper 28 29	Pd Ag		195.1 197.0 Pt Au gold 78 79	Ds Rg demstadtum roentgenium	157 159 Gd Tb gadolinium terbium d 64 65	[247] [245] Cm Bk
		1.0 H hydrogen 1		(6) (8)	220	Fe Co fron cobalt 26 27	Ru Rh		190.2 192.2 Osmium tridium 76 77	1 [268] Mt m meitnerium 109	152 Eu europium 63	238 [237] [242] [243] U Np Pu Am
		Key	lss. I hber	(2) (9)		Cr Mn chromium manganese 24 25	95.9 [98] 101.1 Mo Tc Ru	42 43	183.8 186.2 W Re tungsten rhenium 74 75	Sg Bh seaborgium bohrium 106 107	141 144 [147] 150 Pr Nd Pm Sm praecodymium neodymium promethium samarium 59 60 61 62	238 [237] U NP
			relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V vanadium 23	92.9 Nb	41	180.9 Ta tantalum 73	[262] Db dubnium 105		[231] Pa
				33 (4)	45.0	a Sc Ti	6 88.9 91.2 Y Zr	39	138.9 178.5 a La* Hf um tanthanum hafnium 57 72	6] [227] [261] a AC* Rf Jan actinium ruberfordum 8 89 104	series Ce cerium	232 Th
	1 2	(1) (2)	6.9 9.0 Li Be uthium beryttium 3 4	23.0 24.3 Na Mg sodium magnesium 11	<u> </u>	potassium calcium	85.5 87.6 Rb Sr		132.9 137.3 Cs Ba caesium bartum 55 56	[223] [226] Fr Ra franclum radium 87 88	* Lanthanide series * Actinide series	